
Signal Processing Toolbox™

Getting Started Guide

R2017b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Signal Processing Toolbox™ Getting Started Guide
© COPYRIGHT 2006–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2006 First printing New for Version 6.6 (Release 2006b)
March 2007 Online only Revised for Version 6.7 (Release 2007a)
September 2007 Online only Revised for Version 6.8 (Release 2007b)
March 2008 Online only Revised for Version 6.9 (Release 2008a)
October 2008 Online only Revised for Version 6.10 (Release 2008b)
March 2009 Online only Revised for Version 6.11 (Release 2009a)
September 2009 Online only Revised for Version 6.12 (Release 2009b)
March 2010 Online only Revised for Version 6.13 (Release 2010a)
September 2010 Online only Revised for Version 6.14 (Release 2010b)
April 2011 Online only Revised for Version 6.15 (Release 2011a)
September 2011 Online only Revised for Version 6.16 (Release 2011b)
March 2012 Online only Revised for Version 6.17 (Release 2012a)
September 2012 Online only Revised for Version 6.18 (Release 2012b)
March 2013 Online only Revised for Version 6.19 (Release 2013a)
September 2013 Online only Revised for Version 6.20 (Release 2013b)
March 2014 Online only Revised for Version 6.21 (Release 2014a)
October 2014 Online only Revised for Version 6.22 (Release 2014b)
March 2015 Online only Revised for Version 7.0 (Release 2015a)
September 2015 Online only Revised for Version 7.1 (Release 2015b)
March 2016 Online only Revised for Version 7.2 (Release 2016a)
September 2016 Online only Revised for Version 7.3 (Release 2016b)
March 2017 Online only Revised for Version 7.4 (Release 2017a)
September 2017 Online only Revised for Version 7.5 (Release 2017b)

Overview
1

Signal Processing Toolbox Product Description 1-2
Key Features . 1-2

Basic Signal Processing Concepts
2

Representing Signals . 2-2
Numeric Arrays . 2-2
Vector Representation . 2-2

Waveform Generation: Time Vectors and Sinusoids 2-4

Impulse, Step, and Ramp Functions . 2-6

Multichannel Signals . 2-9

Common Periodic Waveforms . 2-10

Common Aperiodic Waveforms . 2-12

The pulstran Function . 2-15

The Sinc Function . 2-17

The Dirichlet Function . 2-19

Working with Data . 2-21
Data Precision . 2-21

v

Contents

Selected Bibliography . 2-22

Design a Filter with fdesign and Filter Builder
3

Filter Design Process Overview . 3-2

Design a Filter Using fdesign . 3-3

Design a Filter Using Filter Builder . 3-8

Filter Design with the Filter Designer App
4

Introduction . 4-2

Designing the Filter . 4-3

Analyzing the Filter . 4-7

Designing Additional Filters . 4-9

Viewing and Annotating the Filter . 4-10
Viewing the Filter in FVTool . 4-10
Using FVTool for Annotation . 4-14

Exporting Filters from Filter Designer 4-16
Filtering with dfilt . 4-17

Designing Filters Using Command Line Functions 4-20

vi Contents

Overview

1

Signal Processing Toolbox Product Description
Perform signal processing and analysis

Signal Processing Toolbox provides functions and apps to generate, measure, transform,
filter, and visualize signals. The toolbox includes algorithms for resampling, smoothing,
and synchronizing signals, designing and analyzing filters, estimating power spectra,
and measuring peaks, bandwidth, and distortion. The toolbox also includes parametric
and linear predictive modeling algorithms. You can use Signal Processing Toolbox to
analyze and compare signals in time, frequency, and time-frequency domains, identify
patterns and trends, extract features, and develop and validate custom algorithms to
gain insight into your data.

Key Features
• Signal transforms including fast Fourier transform (FFT), short-time Fourier

transform (STFT), and Hilbert transform
• FIR and IIR filter design and analysis
• Measurements such as transition and pulse metrics, band power, bandwidth, and

distortion
• Power spectrum estimation algorithms and data windowing functions
• Statistical signal measurements such as autocorrelation and cross-correlation
• Linear prediction and parametric time series modeling
• Waveform and pulse generation and data resampling functions

1 Overview

1-2

Basic Signal Processing Concepts

• “Representing Signals” on page 2-2
• “Waveform Generation: Time Vectors and Sinusoids” on page 2-4
• “Impulse, Step, and Ramp Functions” on page 2-6
• “Multichannel Signals” on page 2-9
• “Common Periodic Waveforms” on page 2-10
• “Common Aperiodic Waveforms” on page 2-12
• “The pulstran Function” on page 2-15
• “The Sinc Function” on page 2-17
• “The Dirichlet Function” on page 2-19
• “Working with Data” on page 2-21
• “Selected Bibliography” on page 2-22

2

Representing Signals
In this section...
“Numeric Arrays” on page 2-2
“Vector Representation” on page 2-2

Numeric Arrays

The central data construct in the MATLAB environment is the numeric array, an ordered
collection of real or complex numeric data with two or more dimensions. The basic data
objects of signal processing (one-dimensional signals or sequences, multichannel signals,
and two-dimensional signals) are all naturally suited to array representation.

Vector Representation

MATLAB represents ordinary one-dimensional sampled data signals, or sequences, as
vectors. Vectors are 1-by-n or n-by-1 arrays, where n is the number of samples in the
sequence. One way to introduce a sequence is to enter it as a list of elements at the
command prompt. The statement

x = [4 3 7 -9 1];

creates a simple five-element real sequence in a row vector. Transposition turns the
sequence into a column vector

x = x';

x =
 4
 3
 7
 -9
 1

Column orientation is preferable for single channel signals because it extends naturally
to the multichannel case. For multichannel data, each column of a matrix represents one
channel. Each row of such a matrix then corresponds to a sample point. A three-channel
signal that consists of x, 2x, and x/π is

y = [x 2*x x/pi]

2 Basic Signal Processing Concepts

2-2

y =
 4.0000 8.0000 1.2732
 3.0000 6.0000 0.9549
 7.0000 14.0000 2.2282
 -9.0000 -18.0000 -2.8648
 1.0000 2.0000 0.3183

If the sequence has complex-valued elements, the transpose operator takes the conjugate
of the sequence elements. To transform a complex-valued row vector into a column vector
without taking conjugates, use the .' or non-conjugate transpose:

x = [1-i 3+i 2+3*i 4-2*i]; % 1-by-4 vector
x = x.'; % 4-by-1 vector

 Representing Signals

2-3

Waveform Generation: Time Vectors and Sinusoids
Most toolbox functions require you to begin with a vector representing a time base.
Consider generating data with a 1000 Hz sample frequency, for example. An appropriate
time vector is

t = (0:0.001:1)';

where the MATLAB® colon operator (:) creates a 1001-element row vector that
represents time running from 0 to 1 seconds in steps of 1 ms. The transpose operator (')
changes the row vector into a column; the semicolon (;) tells MATLAB to compute, but
not display, the result.

Given t, you can create a sample signal y consisting of two sinusoids, one at 50 Hz and
one at 120 Hz with twice the amplitude.

y = sin(2*pi*50*t) + 2*sin(2*pi*120*t);

The new variable y, formed from vector t, is also 1001 elements long. You can add
normally distributed white noise to the signal and plot the first 50 points:

yn = y + 0.5*randn(size(t));
plot(t(1:50),yn(1:50))

2 Basic Signal Processing Concepts

2-4

 Waveform Generation: Time Vectors and Sinusoids

2-5

Impulse, Step, and Ramp Functions
Since MATLAB® is a programming language, an endless variety of different signals is
possible. Here are some statements that generate a unit impulse, a unit step, a unit
ramp, and a unit parabola.

t = (-1:0.01:1)';

impulse = t==0;
unitstep = t>=0;
ramp = t.*unitstep;
quad = t.^2.*unitstep;

All of these sequences are column vectors that inherit their shapes from t. Plot the
sequences.

plot(t,[impulse unitstep ramp quad])

2 Basic Signal Processing Concepts

2-6

Generate and plot a square wave with period 0.5 and amplitude 0.81.

sqwave = 0.81*square(4*pi*t);
plot(t,sqwave)

 Impulse, Step, and Ramp Functions

2-7

2 Basic Signal Processing Concepts

2-8

Multichannel Signals
Use standard MATLAB array syntax to work with multichannel signals. For example, a
multichannel signal consisting of the last three signals generated above is

z = [ramp_sig quad_sig sq_wave];

You can generate a multichannel unit sample function using the outer product operator.
For example, a six-element column vector whose first element is one, and whose
remaining five elements are zeros, is

a = [1 zeros(1,5)]';

To duplicate column vector a into a matrix without performing any multiplication, use
the MATLAB colon operator and the ones function:

c = a(:,ones(1,3));

 Multichannel Signals

2-9

Common Periodic Waveforms
The toolbox provides functions for generating widely used periodic waveforms:

• sawtooth generates a sawtooth wave with peaks at and a period of . An
optional width parameter specifies a fractional multiple of at which the signal
maximum occurs.

• square generates a square wave with a period of . An optional parameter specifies
the duty cycle, the percent of the period for which the signal is positive.

To generate 1.5 seconds of a 50 Hz sawtooth wave with a sample rate of 10 kHz and plot
0.2 seconds of the generated waveform, use

fs = 10e3;
t = 0:1/fs:1.5;
x = sawtooth(2*pi*50*t);

plot(t,x)
axis([0 0.2 -1 1])

2 Basic Signal Processing Concepts

2-10

 Common Periodic Waveforms

2-11

Common Aperiodic Waveforms
The toolbox also provides functions for generating several widely used aperiodic
waveforms:

• gauspuls generates a Gaussian-modulated sinusoidal pulse with a specified time,
center frequency, and fractional bandwidth. Optional parameters return in-phase and
quadrature pulses, the RF signal envelope, and the cutoff time for the trailing pulse
envelope.

• chirp generates a linear, log, or quadratic swept-frequency cosine signal. An optional
parameter specifies alternative sweep methods. An optional parameter, phi, allows
initial phase to be specified in degrees.

To compute 2 seconds of a linear chirp signal with a sample rate of 1 kHz that starts at
DC and crosses 150 Hz at 1 second, use:

t = 0:1/1000:2;
y = chirp(t,0,1,150);

Plot the spectrogram of the chirp.

spectrogram(y,256,250,256,1000,'yaxis')

2 Basic Signal Processing Concepts

2-12

Use gauspuls to plot a 50 kHz Gaussian RF pulse with 60% bandwidth, sampled at a
rate of 1 MHz. Truncate the pulse where the envelope falls 40 dB below the peak.

tc = gauspuls('cutoff',50e3,0.6,[],-40);
t = -tc : 1e-6 : tc;
yi = gauspuls(t,50e3,0.6);
plot(t,yi)

 Common Aperiodic Waveforms

2-13

2 Basic Signal Processing Concepts

2-14

The pulstran Function
The pulstran function generates pulse trains from either continuous or sampled
prototype pulses. The following example generates a pulse train consisting of the sum of
multiple delayed interpolations of a Gaussian pulse. The pulse train is defined to have a
sample rate of 50 kHz, a pulse train length of 10 ms, and a pulse repetition rate of 1 kHz;
D specifies the delay to each pulse repetition in column 1 and an optional attenuation for
each repetition in column 2. The pulse train is constructed by passing the name of the
gauspuls function to pulstran, along with additional parameters that specify a 10 kHz
Gaussian pulse with 50% bandwidth:

T = 0:1/50e3:10e-3;
D = [0:1/1e3:10e-3;0.8.^(0:10)]';
Y = pulstran(T,D,'gauspuls',10e3,0.5);
plot(T,Y)

 The pulstran Function

2-15

2 Basic Signal Processing Concepts

2-16

The Sinc Function
The sinc function computes the mathematical sinc function for an input vector or matrix

. Viewed as a function of time, or space, the sinc function is the inverse Fourier
transform of the rectangular pulse in frequency centered at zero of width and unit
height. The following equation defines the sinc function:

The sinc function has a value of 1 when is equal to zero, and a value of for
all other elements of .

To plot the sinc function for a linearly spaced vector with values ranging from to ,
use the following commands:

x = linspace(-5,5);
y = sinc(x);
plot(x,y)
grid

 The Sinc Function

2-17

2 Basic Signal Processing Concepts

2-18

The Dirichlet Function
The function diric computes the Dirichlet function, sometimes called the periodic sinc
or aliased sinc function, for an input vector or matrix x. The Dirichlet function is defined
by

where is a user-specified positive integer. For odd, the Dirichlet function has a
period of ; for even, its period is . The magnitude of this function is times
the magnitude of the discrete-time Fourier transform of the -point rectangular
window.

To plot the Dirichlet function between 0 and for and , use

x = linspace(0,4*pi,300);

subplot(2,1,1)
plot(x/pi,diric(x,7))
title('N = 7')

subplot(2,1,2)
plot(x/pi,diric(x,8))
title('N = 8')
xlabel('x / \pi')

 The Dirichlet Function

2-19

2 Basic Signal Processing Concepts

2-20

Working with Data

Data Precision

All Signal Processing Toolbox functions accept double-precision inputs. If you input
single-precision floating-point or integer data types, you should not expect to receive
correct results and in many cases, an error will occur. DSP System Toolbox™ and Fixed-
Point Designer™ products enable single-precision floating-point and fixed-point support
for most dfilt structures.

 Working with Data

2-21

Selected Bibliography
Algorithm development for Signal Processing Toolbox functions has drawn heavily upon
the references listed below. All are recommended to the interested reader who needs to
know more about signal processing than is covered in this manual.

References

[1] Crochiere, R. E., and Lawrence R. Rabiner. Multi-Rate Signal Processing. Englewood
Cliffs, NJ: Prentice Hall, 1983. pp. 88–91.

[2] IEEE. Programs for Digital Signal Processing. IEEE Press. New York: John Wiley &
Sons, 1979.

[3] Jackson, L. B. Digital Filters and Signal Processing. Third Ed. Boston: Kluwer
Academic Publishers, 1989.

[4] Kay, Steven M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice Hall,
1988.

[5] Oppenheim, Alan V., and Ronald W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

[6] Parks, Thomas W., and C. Sidney Burrus. Digital Filter Design. New York: John
Wiley & Sons, 1987.

[7] Percival, D. B., and A. T. Walden. Spectral Analysis for Physical Applications:
Multitaper and Conventional Univariate Techniques. Cambridge: Cambridge
University Press, 1993.

[8] Pratt, W. K. Digital Image Processing. New York: John Wiley & Sons, 1991.

[9] Proakis, John G., and Dimitris G. Manolakis. Digital Signal Processing: Principles,
Algorithms, and Applications. Upper Saddle River, NJ: Prentice Hall, 1996.

[10] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal
Processing. Englewood Cliffs, NJ: Prentice Hall, 1975.

[11] Welch, P. D. “The Use of Fast Fourier Transform for the Estimation of Power
Spectra: A Method Based on Time Averaging Over Short, Modified

2 Basic Signal Processing Concepts

2-22

Periodograms.” IEEE® Transactions on Audio and Electroacoustics. Vol. AU-15,
1967. pp. 70–73.

 Selected Bibliography

2-23

Design a Filter with fdesign and Filter
Builder

• “Filter Design Process Overview” on page 3-2
• “Design a Filter Using fdesign” on page 3-3
• “Design a Filter Using Filter Builder” on page 3-8

3

Filter Design Process Overview

Note You must have the Signal Processing Toolbox installed to use fdesign and
filterBuilder. Advanced capabilities are available if your installation additionally
includes the DSP System Toolbox license. You can verify the presence of both toolboxes
by typing ver at the command prompt.

Filter design through user-defined specifications is the core of the fdesign approach.
This specification-centric approach places less emphasis on the choice of specific filter
algorithms, and more emphasis on performance during the design a good working filter.
For example, you can take a given set of design parameters for the filter, such as a
stopband frequency, a passband frequency, and a stopband attenuation, and— using
these parameters— design a specification object for the filter. You can then implement
the filter using this specification object. Using this approach, it is also possible to
compare different algorithms as applied to a set of specifications.

There are two distinct objects involved in filter design:

• Specification Object — Captures the required design parameters of a filter
• Implementation Object — Describes the designed filter; includes the array of

coefficients and the filter structure

The distinction between these two objects is at the core of the filter design methodology.
The basic attributes of each of these objects are outlined in the following table.
Specification Object Implementation Object
High-level specification Filter coefficients
Algorithmic properties Filter structure

You can run the code in the following examples from the Help browser (select the code,
right-click the selection, and choose Evaluate Selection from the context menu), or you
can enter the code on the MATLAB command line. Before you begin this example, start
MATLAB and verify that you have installed the Signal Processing Toolbox software. If
you wish to access the full functionality of fdesign and filterBuilder, you should
additionally obtain the DSP System Toolbox software. You can verify the presence of
these products by typing ver at the command prompt.

3 Design a Filter with fdesign and Filter Builder

3-2

Design a Filter Using fdesign
Use the following two steps to design a simple filter.

1 Create a filter specification object.
2 Design your filter.

Example 3.1. Design a Filter in Two Steps

Assume that you want to design a bandpass filter. Typically a bandpass filter is defined
as shown in the following figure.

In this example, a sampling frequency of Fs = 48 kHz is used. This bandpass filter has
the following specifications, specified here using MATLAB code:

A_stop1 = 60; % Attenuation in the first stopband = 60 dB
F_stop1 = 8400; % Edge of the stopband = 8400 Hz
F_pass1 = 10800; % Edge of the passband = 10800 Hz
F_pass2 = 15600; % Closing edge of the passband = 15600 Hz
F_stop2 = 18000; % Edge of the second stopband = 18000 Hz
A_stop2 = 60; % Attenuation in the second stopband = 60 dB
A_pass = 1; % Amount of ripple allowed in the passband = 1 dB

In the following two steps, these specifications are passed to the fdesign.bandpass
method as parameters.

Step 1
To create a filter specification object, evaluate the following code at the MATLAB
prompt:

d = fdesign.bandpass

 Design a Filter Using fdesign

3-3

Now, pass the filter specifications that correspond to the default Specification —
fst1,fp1,fp2,fst2,ast1,ap,ast2. This example adds fs as the final input
argument to specify the sampling frequency of 48 kHz.

>> BandPassSpecObj = ...
 fdesign.bandpass('Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2', ...
 F_stop1, F_pass1, F_pass2, F_stop2, A_stop1, A_pass, ...
 A_stop2, 48000)

Note The order of the filter is not specified, allowing a degree of freedom for the
algorithm design in order to achieve the specification. The design will be a minimum
order design.

The specification parameters, such as Fstop1, are all given default values when
none are provided. You can change the values of the specification parameters after
the filter specification object has been created. For example, if there are two values
that need to be changed, Fpass2 and Fstop2, use the set command, which takes
the object first, and then the parameter value pairs. Evaluate the following code at
the MATLAB prompt:

>> set(BandPassSpecObj, 'Fpass2', 15800, 'Fstop2', 18400)

BandPassSpecObj is the new filter specification object which contains all the
required design parameters, including the filter type.

You may also change parameter values in filter specification objects by accessing
them as if they were elements in a struct array.

>> BandPassSpecObj.Fpass2=15800;

Step 2
Design the filter by using the design command. You can access the design methods
available for you specification object by calling the designmethods function. For
example, in this case, you can execute the command

>> designmethods(BandPassSpecObj)

Design Methods for class
fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

3 Design a Filter with fdesign and Filter Builder

3-4

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

After choosing a design method use, you can evaluate the following at the MATLAB
prompt (this example assumes you've chosen 'equiripple'):

>> BandPassFilt = design(BandPassSpecObj, 'equiripple')

BandPassFilt =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x44 double]
 PersistentMemory: false

If you have the DSP System Toolbox installed, you can also design your filter with a
filter System object™. To create a filter System object with the same specification
object BandPassSpecObj, you can execute the commands

>> designmethods(BandPassSpecObj,...
'SystemObject',true)

Design Methods that support System objects for class
fdesign.bandpass (Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

>> BandPassFiltSysObj = design(BandPassSpecObj,...
'equiripple','SystemObject',true)

 Design a Filter Using fdesign

3-5

 System: dsp.FIRFilter

 Properties:
 Structure: 'Direct form'
 NumeratorSource: 'Property'
 Numerator: [1x44 double]
 InitialConditions: 0
 FrameBasedProcessing: true

 Show fixed-point properties

Available design methods and design options for filter System objects are not
necessarily the same as those for filter objects.

Note If you do not specify a design method, a default method will be used. For
example, you can execute the command

>> BandPassFilt = design(BandPassSpecObj)

BandPassFilt =

 FilterStructure: 'Direct-Form FIR'
 Arithmetic: 'double'
 Numerator: [1x44 double]
 PersistentMemory: false

and a design method will be selected automatically.

To check your work, you can plot the filter magnitude response using the Filter
Visualization tool. Verify that all the design parameters are met:

>> fvtool(BandPassFilt) %plot the filter magnitude response

If you have the DSP System Toolbox installed, the Filter Visualization tool produces
the following figure with the dashed red lines indicating the transition bands and
unity gain (0 in dB) over the passband.

3 Design a Filter with fdesign and Filter Builder

3-6

 Design a Filter Using fdesign

3-7

Design a Filter Using Filter Builder
Filter Builder presents the option of designing a filter using a GUI dialog box as opposed
to the command line instructions. You can use Filter Builder to design the same
bandpass filter designed in the previous section, “Design a Filter Using fdesign” on page
3-3

Example 3.2. Design a Simple Filter in Filter Builder

To design the filter using the Filter Builder GUI:

1 Type the following at the MATLAB prompt:

filterBuilder
2 Select Bandpass filter response from the list in the dialog box, and hit the OK

button.
3 Enter the correct frequencies for Fpass2 and Fstop2, then click OK. Here the

specification uses normalized frequency, so that the passband and stopband edges
are expressed as a fraction of the Nyquist frequency (in this case, 48/2 kHz). The
following message appears at the MATLAB prompt:

The variable 'Hbp' has been exported to the command window.

If you display the Workspace tab, you see the object Hbp has been placed on your
workspace.

4 To check your work, plot the filter magnitude response using the Filter Visualization
tool. Verify that all the design parameters are met:

fvtool(Hbp) %plot the filter magnitude response

3 Design a Filter with fdesign and Filter Builder

3-8

Note that the dashed red lines on the preceding figure will only appear if you are
using the DSP System Toolbox software.

 Design a Filter Using Filter Builder

3-9

Filter Design with the Filter Designer App

• “Introduction” on page 4-2
• “Designing the Filter” on page 4-3
• “Analyzing the Filter” on page 4-7
• “Designing Additional Filters” on page 4-9
• “Viewing and Annotating the Filter” on page 4-10
• “Exporting Filters from Filter Designer” on page 4-16
• “Designing Filters Using Command Line Functions” on page 4-20

4

Introduction
This section describes how to graphically design and implement digital filters using
Signal Processing Toolbox. Filter design is the process of creating the filter coefficients to
meet specific frequency specifications. Filter implementation involves choosing and
applying a particular filter structure to those coefficients. Only after both design and
implementation have been performed can your data be filtered.

This section includes a brief discussion of applying the completed filter design and filter
implementation using MATLAB command line functions, such as filter.

4 Filter Design with the Filter Designer App

4-2

Designing the Filter
This section is a step-by-step introduction to using the Filter Designer app to design an
octave-band filter. An octave is the interval between two frequencies having a ratio of
2:1. An octave-band filter is a bandpass filter with high cutoff frequency approximately
twice that of the low cutoff frequency. The class of an octave filter is determined by its
allowable passband ripple and its stopband attenuation. Refer to the ANSI S1.11–2004
standard for more information.

1 Start the app from the MATLAB command line.

filterDesigner

The app opens with a default filter. Its filter information is summarized in the upper
left (Current Filter Information) and its filter specifications are depicted in the
upper right. In addition to displaying filter specification, this upper right pane
displays filter responses and filter coefficients.

The bottom half of the app shows the Filter Design panel, where you specify the
filter parameters. Other panels, such as Import filter from workspace and Pole/Zero
Editor, which you access with the buttons on the lower left, are also displayed in this
area. If you have other products installed, you may see additional buttons.

Note that when you open the app, Design Filter is not enabled. You must make a
change to the default filter design in order to enable Design Filter. This is true

 Designing the Filter

4-3

each time you want to change the filter design. Changes to radio button items or
drop down menu items such as those under Response Type or Filter Order enable
Design Filter immediately. Changes to specifications in text boxes such as Fs,
Fpass, and Fstop require you to click outside the text box to enable Design Filter.

2 In the Response Type pane, select Bandpass.
3 In the Design Method pane, select IIR, and then select Butterworth from the

selection list.

4 For the Filter Order, select Specify order, and then enter 6.

5 Set the Frequency Specifications as follows:
Parameter Setting Description
Units Hz Units for the parameters
Fs 48000 Sampling frequency
Fc1 22 First cutoff frequency (i.e., the frequency

preceding the passband at which the
magnitude response is 3 dB below the
passband gain)

Fc2 45 Second cutoff frequency (i.e., the frequency
following the passband at which the
magnitude response is 3 dB below the
passband gain)

4 Filter Design with the Filter Designer App

4-4

6 After specifying the filter design parameters, click the Design Filter button at the
bottom of the design panel to compute the filter coefficients. The display updates to
show the magnitude response of the designed filter.

Notice that the Design Filter button is disabled after you compute the coefficients
for your filter design. This button is enabled again if you make any changes to the
filter specifications.

7 Click the Store Filter button.

 Designing the Filter

4-5

8 In the Store Filter dialog, change the filter name to Bandpass Butterworth-1 and
click OK to save the filter in the Filter Manager.

`

4 Filter Design with the Filter Designer App

4-6

Analyzing the Filter
After designing the filter, you can view the following filter responses in the display region
by clicking on the associated toolbar button or by selecting the desired response from the
Analysis menu.
Response Toolbar Button Image
Filter specifications

Magnitude response

Phase response

Magnitude and Phase responses

Group delay

Phase delay

Impulse response

Step response

Pole-zero plot

Filter coefficients

Filter information

Note Other analyses are available if you have the DSP System Toolbox product installed.

1 Examine the displayed magnitude response of the filter.
2 Display other responses, as desired. Click the appropriate buttons, shown in the

table above or select the desired response from the Analysis menu.
3 Click the Filter coefficients button to display the filter coefficients.

 Analyzing the Filter

4-7

4 Filter Design with the Filter Designer App

4-8

Designing Additional Filters
You have designed one of the bands of an octave filter bank. This section shows you how
to design and save the other nine bands. The following table defines the parameters for
the remaining bands. Note that all of the bands use these parameters: Bandpass, IIR –
Butterworth , order = 6, Fs = 48000 Hz .
Fc1 Fc2 Filter Name
45 89 Bandpass Butterworth-2
89 178 Bandpass Butterworth-3
178 355 Bandpass Butterworth-4
355 708 Bandpass Butterworth-5
708 1413 Bandpass Butterworth-6
1413 2818 Bandpass Butterworth-7
2818 5623 Bandpass Butterworth-8
5623 11220 Bandpass Butterworth-9
11220 22387 Bandpass Butterworth-10

1 Using the parameters listed in the table above, for each table row, set the
appropriate the Fc1 and Fc2 values.

2 Design the filter by clicking the Design Filter button.
3 Click Store Filter to save the filter.
4 Change the name to the appropriate filter name shown in the table above.
5 Repeat these steps until all 10 filters are designed and stored.

 Designing Additional Filters

4-9

Viewing and Annotating the Filter

In this section...
“Viewing the Filter in FVTool” on page 4-10
“Using FVTool for Annotation” on page 4-14

Viewing the Filter in FVTool

This section teaches you how to use the Filter Visualization Tool (FVTool) to view the
octave-band filter. It also describes how to annotate your filter.

1 Click the Filter Manager button to display the Filter Manager, which lists your
saved filters.

2 Press Ctrl+click on each filter name to select all the filters, and then click FVTool.
FVTool opens with the filter responses overlaid for easy comparison. (If you want to
view a single filter in FVTool, click the Full View Analysis button when that filter
is shown in the app’s display panel or select View > Filter Visualization Tool).

4 Filter Design with the Filter Designer App

4-10

3 Change the x-axis scale to logarithmic by selecting Analysis > Analysis
Parameters to display the Analysis Parameters dialog.

4 Change the Frequency Scale to Log.

5 Click OK.

 Viewing and Annotating the Filter

4-11

6
Click the Legend button to turn on the legend, which you can drag to the
desired location.

4 Filter Design with the Filter Designer App

4-12

7 Click the Legend button again to turn off the legend.

Use the Zoom button and drag a rectangle around the first few passbands to
zoom in.

 Viewing and Annotating the Filter

4-13

8
Click the Restore Default View button to return to the full view.

9 Display other responses, as desired. (The FVTool Analysis toolbar buttons and
Analysis menu are the same as in Filter Designer. See “Analyzing the Filter” on
page 4-7 for descriptions of the buttons.

Using FVTool for Annotation

FVTool is also useful for doing further analysis, adding annotations, and printing.
Available annotations include adding rectangles, text boxes, arrows and lines, and
adding data tips.

Note Do not close Filter Designer at this time. You will use it in future sections.

4 Filter Design with the Filter Designer App

4-14

1 Use the toolbar buttons to annotate your response plot. Add a line by clicking one of
the line buttons, and then use your mouse to draw the line on your plot.

2 Add a data tip by clicking on a plot at the desired point. The data tip shows the
frequency and magnitude at that point.

3 Close FVTool by selecting File > Close.

 Viewing and Annotating the Filter

4-15

Exporting Filters from Filter Designer
The Filter Designer app provides a simple way to create filter objects (dfilts) from
your filter designs. This is particularly useful for saving your filter design to the
MATLAB workspace for use with command line functions. You can also save your filters
as MATLAB code by using File > Generate MATLAB code to run in scripts or batch
files.

1 In Filter Designer, click Filter Manager and highlight only the Bandpass
Butterworth-1 filter.

2 Select File > Export.
3 Set Export to to Workspace. Set Export as to Objects. In Discrete Filter type

Hd1. Click Export to export the first filter in your filter bank to an Hd1 dfilt object
in the workspace.

4 Repeat steps 1 through 3 for each of the remaining nine filters. Highlight each filter
individually to make it the active filter and change the Discrete Filter name to
match the filter number. When you finish you will have 10 dfilt objects in the
workspace.

5 Close the app by selecting File > Close.
6 On the MATLAB command line, verify that your objects were exported by using the

whos command.

4 Filter Design with the Filter Designer App

4-16

whos
 Name Size Bytes Class Attributes

 Hd1 1x1 dfilt.df2sos
 Hd10 1x1 dfilt.df2sos
 Hd2 1x1 dfilt.df2sos
 Hd3 1x1 dfilt.df2sos
 Hd4 1x1 dfilt.df2sos
 Hd5 1x1 dfilt.df2sos
 Hd6 1x1 dfilt.df2sos
 Hd7 1x1 dfilt.df2sos
 Hd8 1x1 dfilt.df2sos
 Hd9 1x1 dfilt.df2sos

Filtering with dfilt

1 Type the following on the MATLAB command line to concatenate your filter bank
filter objects into a single dfilt object.

Hd = [Hd1 Hd2 Hd3 Hd4 Hd5 Hd6 Hd7 Hd8 Hd9 Hd10];
2 To view the first filter, type Hd(1).

Hd(1)

ans =
 FilterStructure: 'Direct-Form II, Second-Order Sections'
 sosMatrix: [3x6 double]
 ScaleValues: [3.40097054256801e-009;1;1;1]
PersistentMemory: false

3 A number of methods can be used to view and manipulate the Hd1 dfilt object. Try
the info command:

info(Hd1) % Displays filter information

Discrete-Time IIR Filter (real)

Filter Structure : Direct-Form II, Second-Order Sections
Number of Sections : 3
Stable : Yes
Linear Phase : No

4 You can open FVTool from the MATLAB command line and specify display
parameters as follows.

 Exporting Filters from Filter Designer

4-17

F = fvtool(Hd,'Analysis','magnitude') % Open FVTool with
 % magnitude display
set(F,'FrequencyScale','Log') % Change to log scale

This produces the same display as step 5 of “Viewing the Filter in FVTool” on page 4-
10 above.

5 Now using the MATLAB command line, create some discrete white Gaussian noise
data, which you can then filter using the filter bank.

rand; % Initialize random number generator
Nx = 100000; % Number of noise data points
xw = randn(Nx,1); % Create white noise
for i=1:10,
 yw(:,i)=filter(Hd(i),xw); % Filter the white noise through
end % the entire filter bank.
 % (:,i) means all rows of column i

6 Plot the filtered data.

plot(yw)

4 Filter Design with the Filter Designer App

4-18

 Exporting Filters from Filter Designer

4-19

Designing Filters Using Command Line Functions
You can specify and design filters at the command line using designfilt. The use of
designfilt provides a powerful and efficient way to specify and implement digital
filters.

As an example, consider a lowpass filter for data sampled at 20 kHz. The desired
passband frequency is 1 kHz with a stopband frequency of 1.2 kHz. Limit the passband
ripple to 1 dB and require 60 dB of attenuation between the passband and stopband
frequencies.

Fs = 20000;
Fp = 1000;
Fst = 1200;
Ap = 1;
Ast = 60;

Design an equiripple FIR filter and a Butterworth IIR filter.

FIR = designfilt('lowpassfir', ...
 'PassbandFrequency',Fp,'StopbandFrequency',Fst, ...
 'PassbandRipple',Ap,'StopbandAttenuation',Ast, ...
 'DesignMethod','equiripple','SampleRate',Fs);

IIR = designfilt('lowpassiir', ...
 'PassbandFrequency',Fp,'StopbandFrequency',Fst, ...
 'PassbandRipple',Ap,'StopbandAttenuation',Ast, ...
 'DesignMethod','butter','SampleRate',Fs);

Display the magnitude responses of the filters.

hfvt = fvtool(FIR,IIR);
legend(hfvt,'FIR','IIR')
axis([0 2 -70 10])

4 Filter Design with the Filter Designer App

4-20

 Designing Filters Using Command Line Functions

4-21

